Обзор различных видов стабилизации изображения в камерах

Профессиональное видеонаблюдение является такой областью, в которой даже самая мелкая деталь может иметь важнейшее значение. Недаром идет непрестанное увеличение разрешения видеокамер, и производители соревнуются, кто сможет представить на рынок новейшую модель с еще большим количеством мегапикселей. Ведь высокое реальное разрешение камер как-раз и позволяет видеть те самые мелкие детали. Раньше задачи распознавания решались только на достаточно близком расстоянии от камер. Теперь же видеокамера может находиться на значительном удалении от наблюдаемого объекта, и при этом передавать все происходящее на сцене с достаточной детализацией.

Для профессионалов, сцены из фильмов, в которых происходит бесконечное увеличение изображения за счет использования фантастических алгоритмов, всегда были комичными. Однако высокое реальное разрешение камер позволяет без использования каких-то фантастических технологий получать максимально детализированное изображение. На практике реальное разрешение зачастую значительно меньше заявленного, вследствие воздействия разнообразных внешних факторов. При покупке видеокамера может демонстрировать отличные результаты на тестовом стенде. Однако, при эксплуатации в реальных условиях, ее показатели могут серьезно ухудшиться. На  разрешение камеры оказывают сильное влияние низкая освещенность, наличие ярких источников света, наличие в кадре одновременно ярких и темных зон, внутренние шумы камеры. Производители видеокамер уже давно предлагают решение для каждой из этих проблем. Так, инсталлятор легко может получить камеру с чувствительным сенсором, встроенной ИК-подсветкой, алгоритмами компенсации засветки, широким динамическим диапазоном, алгоритмами компенсации шумов.

Одной из причин, также приводящих к ухудшению не только разрешения, но и  эффективности наблюдения в целом, является воздействие на видеокамеры механической вибрации в месте установки. И по словам некоторых производителей, эта проблема практически не решаема на текущем уровне развития видеокамер. Подобная вибрация  всегда сопутствует видеокамерам, установленным вдоль автомобильных дорог на столбах или специальных мачтах. В этом случае, она возникает вследствие сильного ветра и нестабильности используемой конструкции. Кроме того, на камеру может непосредственно передаваться и вибрация от техногенного источника, в том числе и в помещениях. Зачастую рядом оказывается какой-то мощный источник вибрации: генератор, лифт, входная дверь.

Кроме смазывания изображения при эксплуатации в таких условиях, происходит и «дребезжание» картинки. И главная проблема состоит в том, что вибрация является непредсказуемым процессом, не может быть учтена, описана, а значит и полностью скомпенсирована каким-то определенным алгоритмом. Подобное ухудшение изображения сильно усложняет задачу детекции, а тем более распознавания. Например, при распознавании номеров, ПО может не справляться с такими условиями и выдавать большое количество ошибок. Стоит учитывать, что для длиннофокусных объективов, влияние вибрации будет наиболее критичным. И даже небольшое перемещение камеры, может вызывать колоссальное смещение картинки, что при больших увеличениях недопустимо. А ведь малая вибрация присутствует практически всегда, но обычно ее просто не замечают.

Поэтому важным для инсталлятора, а значит и производителя, становится разработка способов борьбы с подобным. Полноценным решением этой проблемы является использование оптической стабилизации в объективах видеокамер. Но такие камеры практически отсутствуют на рынке и являются скорее дорогостоящими проектными устройствами. А следующим решением, куда более доступным и распространенным, является использование программной стабилизации изображения. Подобные алгоритмы стабилизации, называются у разных компаний по разному (EIS – electronical image stabilization, DIS – digital image stabilization). Также существует вариант, при котором в камере используется гиросенсор. Его перемещения передаются в процессор камеры и учитываются при программной обработке изображения для компенсации вибрации. Есть несколько достаточно экзотических вариантов для видеонаблюдения. Ну и наконец, мелкая вибрация камеры попросту игнорируется, лишь иногда подстраивается сбившаяся фокусировка.

Принцип работы алгоритмов цифровой стабилизации изображения

Принцип работы алгоритмов цифровой стабилизации изображения заключается в программной обработке видеосигнала, поступающего с сенсора камеры. При включении режима стабилизации видеокамера фиксирует центр изображения, и при возникновении вибрации реальная картинка смещается в противоположную от перемещения кадра сторону. Таким образом, центр каждого обработанного кадра оказывается в центре изображения, передаваемого видеокамерой, и исключается «качание» сцены на экране.

Однако у этого алгоритма есть и отрицательные стороны, кроющиеся в самой основе принципа его работы. В первую очередь обрезаются периферийные области кадра, а значит пропадает и вся полезная информация с краев изображения. Во вторых, вследствие работы алгоритмов, возможно еще большее ухудшение реального разрешения видеокамеры.

Принцип работы алгоритмов цифровой стабилизации изображения с использованием гиросенсоров

При таком исполнении принцип работы алгоритма схож с предыдущим вариантом. Отличие заключается в том, что внутри камеры установлен специальный DSP-чип, который фиксирует ее физическое перемещение. Измерения производятся при помощи гиросенсоров или акселерометров. Эти измерения поступают на процессор видеокамеры, где учитываются при компенсации воздействующей вибрации. А значит алгоритм не просто программно фиксирует область изображения и пытается удержать его в центре. Величины линейных и угловых перемещений камеры учитываются для каждого кадра. И для любого, даже незначительного смещения корпуса камеры, определяется направление и величина. Поэтому у процессора для любого кадра из видеоряда есть информация куда необходимо сместить текущее изображение, чтобы при совмещении с предыдущими кадрами получалась четкая несмазанная картина.

Технические преимущества и недостатки у такого способа в целом аналогичны варианту с использованием программного алгоритма стабилизации: камера не меняется в габаритах, не требует дополнительных вложений, но часть чувствительного сенсора занимается алгоритмом. Вместе с ростом эффективности компенсации вибрации растут и требования к качеству реализации алгоритма. Ведь неправильное использование показаний с гиросенсора может значительно ухудшить итоговую картинку. А его выход из строя полностью исключает возможность стабилизировать изображение в дальнейшем. Ведь просто перепрошить камеру уже не получится. Но и результаты, демонстрируемые этим способом значительно превосходят предыдущий вариант.

Принцип работы оптических алгоритмов стабилизации изображения в объективе

При оптической стабилизации используется та же логика, что и в предыдущем случае. Внутри самого объектива устанавливается модуль с гироскопами или акселерометрами, которые измеряют перемещение камеры. Но это перемещение уже компенсируется внутри самого объектива, за счет управления положением площадки с оптическим элементом при помощи электромоторов. Грубо говоря, в объективе расположена линза, которая никак не реагирует на внешнюю вибрацию, и сохраняет свое положение в пространстве неизменным. Поэтому и на матрицу видеокамеры поступает статичное изображение сцены, поскольку на удаленные объекты вибрация не действует.

Благодаря такому принципу, оптическая стабилизация и позволяет добиться наилучших результатов в компенсации внешней вибрации. Кроме того может гаситься не только шумовая вибрация с широким диапазоном амплитуд и частот, но и паразитные гармонические колебания. Важнейшим преимуществом у оптических методов перед цифровыми является использование сенсора полностью, без обрезания части изображения. Но эффективность напрямую связана с точностью измерения перемещения и скоростью его компенсации. А значит первостепенную важность играют гиросенсоры и моторы объектива. Для достаточной точности необходимо, во-первых, существенное увеличение размеров самого объектива, а во-вторых еще более значительное увеличение его стоимости. Поэтому этот вариант обычно встречается только в дорогих операторских видеокамерах, но отсутствует в видеонаблюдении. Вполне вероятно, что это связано с тем, что за такую стоимость результат не оправдывает вложений. Кроме того, дополнительный оптический элемент может негативно сказываться и на эксплуатационных характеристиках системы видеонаблюдения: чувствительности, стабильности разрешения.

Принцип работы оптических алгоритмов стабилизации изображения в камере

Чтобы сгладить недостатки предыдущего метода, связанные с большими размерами объектива, подвижный оптический элемент может помещаться внутрь самой видеокамеры. Технологическое развитие позволяет фиксировать матрицу так, чтобы она не перемещалась вслед за колебаниями корпуса. Так и компенсируется вибрация. В том числе становится возможным компенсировать и угловые перемещения. Такой подход позволяет использовать любой объектив, даже с оптической стабилизацией, тем самым предоставляя недостижимую любым предыдущим вариантом стабильность съемки. 

Техническим недостатком является меньший, в сравнении с оптической стабилизацией диапазон компенсируемых амплитуд колебаний. Так перемещения матрицы скорее всего не хватит при видеонаблюдении с длиннофокусным объективом, или что тоже самое с большим зумом. Ну, а функциональной проблемой, ставящей крест на использовании этого метода при видеомониторинге, становится его полное отсутствие в камерах для видеонаблюдения. Однако, вполне вероятно, что и этот способ рано или поздно будет представлен кем-то из производителей на рынке.

Принцип работы стабилизированной платформы

А окончательным решением проблемы вибрации является использование внешних стабилизированных платформ. Принципиально это та же самая подвижная платформа с матрицей, отрабатывающая колебания корпуса. Но вместо матрицы здесь выступает камера целиком. Благодаря такому подходу снимается проблема с малыми размерами активных элементов конструкции. Ведь, поскольку камера устанавливается на такую платформу, размеры сенсоров, моторов и вычислительных элементов неограничены. А значит можно добиться максимального быстродействия, точности и уровня компенсации вибрации, не оглядываясь на габариты и потребляемую мощность. Кроме того, на такую платформу могут быть установлены любые камеры, включая и самые массивные PTZ-модели.

Но проблема заключается в том, что такие устройства применяются в профессиональный видеосъемке, стоят сравнимо с небюджетными камерами, и не используются в видеонаблюдении. Но принципиально ничто не препятствует их использованию совместно с любой видеокамерой. А поэтому, вполне вероятно, что производители видеокамер расширят свой модельный ряд подобными устройствами. Нам видится вполне логичным добавление внешних кожухов для box-камер или переходников для уличных камер с таким функционалом в каталог брендов. Тем более, что комплектующие стоят недорого, не требуется написания сложных алгоритмов для процессоров, а некоторые умельцы уже сами собирают такие устройства в кустарных условиях.

Сводный обзор

Если же подытожить всю информацию и поговорить о преимуществах и недостатках разных видов стабилизации изображения, то можно отметить следующее:

Тип стабилизации

Преимущества

Недостатки

Оптическая

    • Нет потери площади зоны обзора

    • Широкий диапазон компенсируемой амплитуды и частоты вибрации

    • Объектив может быть использован с любой камерой с подходящим креплением

    • Повышенная стоимость

    • Увеличенные размеры объектива

    • Практически нет на рынке видеонаблюдения

    • Дополнительный элемент в объективе может оказать влияние на параметры съемки

Цифровая

    • Алгоритм может быть заложен практически в любую камеру

    • Распространенность на рынке

    • Возможно использование отдельного процессора для повышения качества работы алгоритма

    • Частичная стабилизация колебаний

    • Использование только части изображения

    • Возможно ухудшение детализации изображения, вследствие работы алгоритма

Цифровая с использованием показаний гиросенсора

    • Более широкий диапазон компенсируемой амплитуды и частоты вибрации, чем у цифрового способа

    • Возможно использование отдельного процессора для повышения качества работы алгоритма

    • Повышенная стоимость камеры

    • Использование только части изображения

    • Редко есть на рынке видеонаблюдения

Подвижная матрица с гиросенсором

    • Не увеличивает габариты камеры

    • Малые вибрации компенсируются с высокой точностью

    • Позволяет стабилизировать перемещения практически в любых направлениях

    • Не ограничивает в выборе объектива

    • Нет в видеонаблюдении

    • Низкая эффективность при больших фокусных расстояниях

    • Малый диапазон компенсируемой амплитуды и частоты вибрации

    • Наиболее дорогое решение

Внешняя гироплатформа

    • Компенсация практически любой вибрации

    • Подходит для любой камеры

    • Нет в массовой продаже

    • Большие размеры

Итог

Как можно заметить, существует большое количество вариантов стабилизации изображения в фото и видеотехнике, но часть из них не реализована в области видеонаблюдения. Некоторые решения, даже если и будут созданы, не смогут быть быстро внедрены в реальные проекты. Важным тормозящим фактором окажется их стоимость и некоторые чисто технические слабости в базовых принципах работы. Но не стоит сбрасывать их со счетов. Ведь и другие технологии, которые раньше казались неприменимыми при видеомониторинге, сейчас стали распространенными и доступными для любого инсталлятора.

Статьи

Какие встроенные в видеокамеру алгоритмы видеоаналитики может сейчас получить инсталлятор?

Информация о том, какие технические характеристики видеокамер являются наиболее важными для создания профессиональной системы видеонаблюдения.

Какие комбинации матричных цветофильтров могут увеличить количество информации об изображении, гарантируя большее разрешение и минимум шумов?

Тесты